KICKSTART	Curriculum Overview Document 3III's Science	W	
Our whole School curriculum vision believes:			

Kickstart Academy is committed to providing a safe, caring and stimulating environment for all students. This allows our young people to reengage with learning and either return to mainstream schooling or achieve success whilst remaining with ourselves. During this time, the learning needs of each individual pupil are accurately assessed to support personalisation of learning.

Our main aims as an academy are:

- To keep our students safe
- To provide a high quality of education
- Help our students to personally develop
- Improve outcomes for our young people

Our curriculum is the vehicle to deliver our whole-school vision and we believe that the delivery of an effective curriculum to help improve educational outcomes is a vital way to positively impact our students' futures. We endeavour to further our students' intellectual development, social and emotional development, character and responsibility, happiness, and success.

We underpin our curriculum using our whole school values: Belong, Respect, Inspire, Succeed, Enjoy. Our teachers aim to develop and deliver the curriculum in a way that remains true to the subjects' core content and concepts, creates a safe learning environment, encourages progression, and develops a lifelong love of learning.

Our whole School curriculum intent believes:

Our intent is to provide students with educational success and provide them with the opportunities to develop the essential skills and knowledge that they remember, not just encounter, ready for the next stage of their lives. This may be when they return to mainstream school or when they leave Year 11 and embark on their journey into further education, training, or employment. Our curriculum is designed for progression and to be

inclusive for all whilst setting high expectations of our learners. We encourage our students to be active thinkers with the product of knowledge being our overarching goal.

We aim to provide a broad curriculum that offers a range of academic and vocational pathways whilst fostering creativity and developing critical thinking. We intend for our students to leave Kickstart with an ability to read, write, and communicate effectively. We also have a strong focus on the personal and social development of our students that allows them to understand and manage their emotions, recognise risk, increase resilience, and further their knowledge on the culturally rich communities in which they live.

As a school we also work closely with outside agencies, to help further support our young people to the greatest extent. Our target is for our students to leave Kickstart with an increased cultural capital that supports their development and allows them to achieve success beyond the classroom.

We strive to identify and work on the different and individual needs of our young people within school to help them develop in whatever they require for success. We aim to identify their individual needs and gaps in learning whilst supporting them through the use of differentiation. It is our intention that our students leave with a broad knowledge and understanding of the British Values and understand the positive impact they can have on their communities.

Improving outcomes for our young people is of utmost importance to us. We look to maximise attendance and punctuality, to ensure our students can access the provision they need to help them remain safe, improve their well-being, and succeed. We also have a key focus on behaviour management, with a very skilled staff team that work closely with our students to ensure that behaviour for learning is positive.

Our intention for our curriculum is:

Scientists at Kickstart Academy will have an appreciation for the world they live in and a deep understanding of how things work and the impact their actions can have on the world around them. By the end of their time at Kickstart, pupils will understand what it is to be a scientist. Pupils will have a curiosity and fascination in finding out about the world and how things work as well as an appreciation of the value of science in every aspect of their life and the wider world. Our pupils will have developed an excellent knowledge of many of the areas within science, deepening and expanding their knowledge and understanding of how the world works. They will have a holistic understanding of the ways in which the many aspects that make up the universe are connected, and how everything from the smallest atom to the largest planet are interrelated.

Pupils will develop a comprehensive understanding of the multiple areas within science and will develop an extensive core of scientific knowledge and vocabulary, which will be learned and regularly practised so that students are confident and comfortable using academic language in every context that requires it throughout their education and beyond. They will be able to utilise their own investigative skills in a range of contexts; utilising their knowledge

and understanding of theoretical and practical science to take an in-depth view of the world. Kickstart scientists will be able to carry out complex and increasingly independent enquiries and experiments, ask their own relevant questions, make sense of scientific data, think critically about different views, and justify their own hypotheses in order to derive a reasoned and valid conclusion. They will then be able to explain their reasoning and conclusions using relevant and subject specific vocabulary.

As successful scientists, they will develop transferable and specialised skills. Skills and methods are interwoven throughout the program of study with a focus on consolidating numeracy skills via strong cross curricular links, commonality in methodologies and terminologies. In doing so they will consolidate and extend key skills which they will be able to apply in a range of scenarios.

Within KS4 they will secure foundation knowledge and then expand on this further to ensure a deep and broad understanding. They will have the knowledge and understanding to enable them to apply what they know to both familiar and unfamiliar situations which will help them to go on to achieve their potential as young scientists entering a diverse, dynamic and interdependent world.

Linking our curriculum intention to our local community:

The curriculum, through enrichment during the school day and within enrichment opportunities, will maximise the use of the local area. We will link our curriculum to the following:

- Telford college/HLC microscopy British values sharing resources
- Admaston House Cooking Cross curricular physical and chemical reactions
- Albrighton Moat Fishing Cross curricular Ecosystems and sustainability (This depends on the available vocational activities)
- Boxing Cross curricular the human body/body systems

Implementation

Lessons are engaging because they are rigorous. Students want to succeed, and, through hard work and achievement, they want to learn more. Modelling is a key aspect of teaching in geography. Through regular feedback and guided practice students master key concepts, places and processes. Teachers explicitly teach students how to learn and revise so that they can be successful in regular knowledge and vocabulary tests. This helps to ensure long-term retention of core principles from KS3 through to KS4 and beyond. Fieldwork opportunities at KS3 and 4 provide students with real world contexts to apply their knowledge. Key concepts are revisited over key stages as well as between lessons to practice retrieval and recall.

Lessons are engaging and sequential and are planned in smaller units (with relevant extension and challenge activities) to allow for progression and understanding without losing student interest. Students they are planned to fit in to a specific topic each half term allowing time to develop foundation knowledge and deeper more specific learning. Through regular feedback and guided practice students expand on their knowledge, master key concepts and develop understanding of processes.

To ensure our aims for the curriculum are implemented effectively we instil 6 core values into our curriculum known as 'The Kickstart 6.' In Science this is achieved in the following ways:

Knowledge

•Use of retrieval practice of topics taught using a combination of short term and longer-term memory (lesson visuals, and 'Do Now' activities etc.)

Reducing cognitive overload when introducing new topics by chunking information down, modelling new concepts ('I Do / We Do / You Do' etc.) and using regular low-stakes assessment to check new learning.
Developing subject knowledge of teachers regularly through CPD.

In science, key concepts in each of the three specialisms Biology, Chemistry and Physics are revisited and built upon to ensure a solid foundation knowledge and ensure long term retention and the development of well-rounded and knowledgeable scientists.

Explanation and Practice

•Teacher-led explanations are clear and concise.

•Information is provided in a student-friendly way that is accessible by all.

•Information is chunked when necessary.

•Guided and independent practice is embedded within lessons using clear success criteria.

In science explanations are linked to everyday events and supported by visual demonstrations, observations and practical's.

Modelling and Scaffolding

•New concepts, tasks, and knowledge are modelled first with differentiated scaffoldings provided where required to help build students' confidence

•A variety of models (worked examples, live modelling etc.) are shared with students to enhance their understanding.
•Scaffolding is withdrawn when teachers have assessed that students are ready.
•In Art at the start of each new skill students are given a demonstration of skills before they try for themselves.
Students in Art use their sketchbooks to explore ideas, to build and develop their ideas.

In Science, modelled and practical activities are key aspects of teaching within Science. Pupils are given access to a range of lesson formats including practical sessions, modelled activities, theoretical sessions, and visual aids and the 'I Do', 'We Do', 'You Do' model. Fieldwork, experiments, or visits from experts can be utilised to enhance the learning experience and provide real world contexts.

Questioning

•Targeted questions are used to gain live feedback from students in the lesson.

•A variety of questioning methods are used (cold calling, show-me boards etc.)

•Questioning is used to allow students to deepen their understanding through subject-specific terminology and academic dialogue.

In science questioning is used to check for understanding and probe students thinking, activate prior learning and encourage thinking, stirring curiosity which is one of the key pillars in science.

<u>Feedback</u>

Feedback includes a combination of live questioning within the classroom and more deeply marked pieces of work.
Feedback is personalised (Pink for Think, live marking etc.) to allow students to progress with their individual learning.
Feedback is given in a positive, encouraging, and constructive way (WWW and EBI etc.)
Students are actively encouraged to engage with feedback (DIRT, Purple for Progress etc.) to address learning gaps.

Behaviour and Relationships

•Teachers create environments in which all students feel safe.

•Positive and professional relationships are established though clear roles, routines, expectations, and boundaries.

•Routines and behaviours are rehearsed and positively modelled by staff.

•Differentiated behaviour management strategies are applied to help challenge and correct student behaviour.

We are implementing a transition from AQA Combined Synergy to AQA Combined Trilogy as well as covering entry level content. The same content will be covered but in a more suitable sequence. We are moving away from a 2 year rolling programme in to a new curriculum implementation to encourage development of skills in a sequential and supportive manner.

Year 10 Curriculum implementation: Emerging and developing our skills and understanding in order to be a Scientist.

1	2	3	4	5	6
1 Topic 1: Introducing science AQA trilogy WJEC/entry level. Baseline assessments. This initial unit introduces students to the fundamentals of our science qualifications. Due to the limited access some of our students have experienced	2 Topics 1: Infectious diseases/communi cable and non- communicable diseases This half term students have the opportunity to investigate health and disease. Consolidating and building upon	3 Topic 1: Atoms, elements and compounds The start of the spring term will focus on atoms, elements and compounds. Depending on previous experience some of our students have shown a very limited understanding of the theory of science. We cover a range of foundation information before further developing and mastering our understanding to give all students the opportunity	4 Topic 1: Quantitative chemistry Within the second part of the Spring term we will be looking at quantitative chemistry. This unit has a strong mathematics overlap with sections on rations, percentages and	5 Topic 1: Energy The start of Spring term we will focus on energy. We consider what energy is and encourage students to explore their own thoughts on this and where they envisage energy in their day-to- day lives. This is then built on to develop understanding of the	6Topic 1: Electricity continuedWe continue with our Electricity topic into the second half of the summer term.Students will have the opportunity to create circuits as well as learn the safety aspects of electricity and how to safely wire a plug. We will be looking in
nave experienced within this subject we complete transition test baseline assessments that will give us a better understanding as to the student's current knowledge and aims. first unit so that by the end of this half term.	building upon previous understanding with reference to cell structure (from ,last half term) and exploring the concept of disease causing microorganisms (pathogens). Students will be able to categorise	give all students the opportunity to develop as well-rounded scientists. Within this unit we cover what the periodic table is; including some history on who developed the modern version of the periodic table, we look at what an atom is and explore its structure. Using a mixture of methods, experiences and learning styles	percentages and balanced equations. Spring 1's topics on atoms and the periodic table will help feed in to our understanding within this topic. Topic 2: Electrolysis	understanding of the relevant terminology and the types of both energy stores and transfers that occur. This topic underpins a key concept in physics with an introduction to energy stores; the work equation and potential energy equations to support numeracy and continue the theme of	We will be looking in depth on the purpose of the wires and their plastic coating and will be able to link our overall learning this back to prior learning in Yr10 Spring 1 (metals). Topic 2: Radiation We are able to challenge our students within this

Tania 0. \A// 4 !. 41					south has an end to a set the
Topic 2: What is the	diseases as	we explore areas such as	GCSE level	underpinning Science	unit by researching and
body made of?	communicable and	particle theory, changes in state	practical's such as	with maths.	discussing further
	non-communicable	and types of mixtures and	investigating		complex areas of the
Our second topic	and investigate how	compounds.	electrolysis of	Utilising both	curriculum including
focuses on our	they are spread,		aqueous solutions	theoretical and practical	radiation, half life and
understanding of the	vaccinations and the	Students will have the	using inert	experiences within	polymers.
human body. It gives	discovery of	opportunity to plan and	electrodes are	lesson we explore how	
the students the	medicinal drugs to	complete practical investigations	explored through	energy is transferred	<u>End of half term</u>
opportunity to develop	treat illness. This	utilising techniques such as	simulations, videos	and consider a range of	assessments comprise
their knowledge of	opportunity enables	chromatography.	and in practical	ways that this is	of Entry level
levels of organisation	the incorporation of		scenarios where	recorded.	assessments, topic
within the body as well	cultural capital	Students will have completed	possible to allow		specific questions and
as specifically	through discussion	science investigations following	students to develop	There is a strong cross	Mock/GCSE paper
focussing on a	of relevant	a sequence of investigation	their understanding	curricular mathematics	practise as relevant.
number of body	scientists, such as	involving aims, hypothesis,	and complete	link within this unit as	
systems.	Alexander Fleming,	methods of data collection, data	GCSE level	we utilise a range of	
This unit gives	Ignaz Semmelweis	,	investigations.	formula triangles to	
opportunity for a	and/or Louis	presentation, data analysis,	U	calculate types of	
range of cross	Pasteur.	conclusions and evaluations.	End of half term	energy and energy	
curricular links and	This topic also links	We will be further developing	assessments	efficiency. Students are	
ties in with the RSE	back to healthy	our skills on writing extended	comprise of	encouraged to show	
curriculum through	choices with an	answers, explaining a	Entry level	their working out and	
coverage of human	exploration in to	hypothesis and utilising correct	assessments,	we explore how to	
body.	sexually transmitted	scientific terminology within our	topic specific	rearrange the formulas	
	diseases including	conclusions.	questions and	to fully utilise them.	
This topic allows	how they are		Mock/GCSE paper		
students to explore	transmitted,	Topic 2: Metals and non-	practise as	Due to this topics	
their understanding of	symptoms, how they	metals	relevant.	relationship with forces	
the human body	are prevented,	Illetais	<u></u>	such as gravity and	
through a range of	treated and the	This unit focuses on metals and		other relevant subjects	
activities and learning	harm they can do.			including friction and air	
styles.	hann thoy ban do.	non-metals. Within this topic we		resistance we have a	
End of half term		consider what an alloy is,		strong opportunity to	
assessments	End of half term	common allows, how metal is		recap on, and further	
<u>comprise of topic</u>	assessments	extracted, the affect on the			
		landscape and pollution,			

<u>specific questions</u> <u>and Mock/GCSE</u> <u>paper practise as</u> <u>relevant.</u>	<u>comprise of Entry</u> <u>level assessments,</u> <u>topic specific</u> <u>questions and</u> <u>Mock/GCSE paper</u> <u>practise as</u> <u>relevant.</u>	recycling metals and how metals react. We identify and utilise prior knowledge when considering the properties and uses of metals within both the students' day-to-day lives and experiences as well as considering them in wider contexts. We practically explore items to ensure a good understanding of their properties and identification of materials. <u>As relevant we can practice or</u> <u>complete an entry level NEA</u> <u>practical.</u>	develop, KS3 knowledge on forces. Topic 2: Electricity The second topic we will focus on explores electricity and circuits. Electricity is a fundamental pillar of the Sciences expanding through KS3, into KS4 and beyond. We will be giving students the opportunity to identify and build upon their prior knowledge within this unit and further explore it through the use of practical activities including real	
			life scenarios.	

Year 11 Cur	riculum implementation: 2	Further developing and 3	<mark>mastering our skills and נ</mark> 4	understanding in order to	be a Scientist 6
Topic 1: Introducing science AQA Trilogy WJEC/entry level.	Topic: Food chains and genetic	Topic 1: Acids and bases	Topic 2 : Atmosphere and pollution	Topic 1: Forces	Year 11 GCSE Exams
Baseline	development			Our first short unit in	
assessments.		At the start of the	Our spring 2 topic	this half term	
	For the second half of the autumn term we will	spring term we will be looking at a unit on PH,	focuses on our	encompasses the topic of forces. We look at	
This initial unit	be focusing on Food	chemical changes.	understanding of the earth, specifically related	Force, weight, work	
ntroduces students to	chains/webs and	Students will have the	to atmosphere and	done, power and learn	
he fundamentals of	genetic development.	opportunity to develop	pollution. It gives the	how to complete	
our Science	Students are given the	their understanding on	students the opportunity	relevant calculations.	
qualifications. Due to	opportunity to identify	both acids and bases	to develop their		
he limited access	and build on their prior	and use practical	knowledge of their	Topic 2: Speed and	
some of our students	knowledge and start	activities to trial	impact on the earth/their	braking distance	
nave experienced	with fundamental	different PH testing	carbon footprint, climate		
within this subject we	concepts before further	methods and identify	change and how the	A secondary unit this	
complete transition	exploration and	the PH scale. We will	atmosphere has	half term utilises and	
est baseline	deepening the	continue to develop	changed over time.	expands on the	
assessments that will	understanding. The	pupils' understanding of	This unit gives	students use of formula	
give us a better	concepts covered	reactivity through	opportunity for a range of	triangles and graphing	
understanding as to he students current	consolidate and extend	applying their existing	cross curricular links	skills. Maths has a	
nowledge and aims.	learning that they will	knowledge of chemical	including PSHE with	fundamental and strong	
irst unit so that by the	have encountered	reactions to investigate	coverage relating to	link with science and	
and of this half term.	throughout KS2 and 3	order of reactivity.	pollution and the	this is highly apparent	
	whilst giving the	Pupils will construct	environment, Maths via	within this unit. During	
Горіс 2:	opportunity to solidify	both word and symbol	patterns and	this unit students get to	
Photosynthesis	current knowledge.	equations throughout this topic and	percentages, Art through scientific diagrams and	participate in practical experiments giving	
		investigate reduction	English with extended	them raw data to use in	

During the first half of	Areas that are covered	reactions, neutralisation	writing, research and	their calculations. The	
the autumn term the	within this unit include,	reactions and	making comparisons.	unit covers	
students focus on	but are not limited to,	indicators. This topic		speed/braking distance,	
plant cells and	food chains and food	provides a heavy	As part of this unit	distance/time graphs,	
photosynthesis. Due	webs, competition and	emphasis on practical	students have the	acceleration and	
to the inconsistent	living/non-living factors,	skills as well as	opportunity to plan and	speed/time graphs	
subject access that	decay and the carbon-	scientific literacy.		speed/lime graphs	
some of our students	cycle, adaptation	Students will be able to	complete practical investigations and	Topic 3: Magnetism	
			0	and Electro	
have had previously	(natural and artificial	plan practical	experiments. This		
we cover foundation	selection), genetic	investigations, make	includes exploring how to	magnetism	
aspects as to plant	material, alleles and	observations, follow	filter water and get	This short unit develops	
and animal cells and	genetic crosses.	instructions, balance	potable water as well as	This short unit develops	
what they are made		equations, and identify	looking at different	our coverage of	
of.	Within these areas we	risks and hazards.	methods and tools to do	magnetism. We	
These topics build on	will look at developing	T	SO.	practically explore how	
what pupils have	knowledge and skills	Topic 2:		magnets work and link	
learnt at KS2 and offer	from assembling food	Chromatography	Topic 2: Environmental	this back with our Year	
opportunities for	webs to completing		_	10 spring topic on	
consolidation and	genetic crosses and	This short practical	The second topic we will	metals.	
extension of their	identifying conclusions	topic/activity reflects on	look into will also have		
existing knowledge	based on the given	skills and techniques	some links back to our	During this unit there	
and skill base, whilst	data and considering	from KS2 and 3. Pupils	metals topic due to	are a number of	
simultaneously	genetic traits.	revisit key vocabulary	environmental impacts.	practical opportunities.	
ensuring a solid		associated with		Students are able to	
foundation of scientific	As part of the unit we	solutions with emphasis	We will be looking at a	map out/plot magnetic	
understanding that	will be developing our	on solubility, solvent,	range of real life	fields around a magnet.	
can be utilised	knowledge of relevant	soluble, insoluble and	environmental scenarios		
through pupils'	terminology and our	solute. Students	including oil spills,	Using a range of visual	
subsequent years of	ability to utilise that	explore and discuss the	volcanoes, fossils, rock	aids such as videos we	
study.	correctly.	uses of chromatograms	formation and human	explore the different	
This leads in to		and retention factors in	impact.	types of waves around	
developing a deeper		industry, food		us and develop our use	
understanding of cell	End of half term	colourings and dyes, as	We will be completing	of relevant terminology	
type and similarities	assessments comprise	well as in the police	hands on activities	within measuring wave	
and differences.	<u>of topic specific</u>	force before utilising	relating to exploring	length and identifying	

Further to this we look	questions, entry level	these factors in	density, fossil formation,	their relevant	
in to the process of	NEA papers and	completing their own	and ecological disasters.	properties.	
photosynthesis and	Mock/GCSE paper	investigation within the	We will be considering		
types of respiration.	<u>practise as relevant.</u>	context of a police	sustainability and our		
		investigation.	own personal carbon	<u>Year 11 exams will</u>	
End of half term		_	footprints.	start part way through	
assessments comprise		End of half term		this half term.	
of topic specific		assessments	End of half term	Therefore opportunity	
questions, entry level		<u>comprise of topic</u>	assessments comprise	will be given to catch	
NEA papers and		<u>specific questions,</u>	of topic specific	<u>up on any missed</u>	
Mock/GCSE paper		Entry level and	guestions, Entry level	NEA assessments	
practise as relevant.		Mock/GCSE paper	papers and		
		practise as relevant.	Mock/GCSE paper		
			<u>practise as relevant.</u>		

Impact of our curriculum:

lessons, progress is measured through quizzes, interactive multiple choice questioning and through marking. Feedback plays a crucial role in assessing depth of student understanding and analysing other students' answers allows students to assess their own progress based upon the feedback from the teacher. Mastery is achieved through sequential learning leading to a deeper more developed understanding and regular opportunities to practice recalling key information.

Baseline assessments identify initial foundation knowledge levels and analysis of this data identifies GCSE and Entry level starting points for each student. Data from end of topic tests and mock papers are used to review topics, identify gaps and target parts of the curriculum as needed. Gaps are addressed and closed through a range of methods including revisiting topic areas through starter and plenary activities.

Engagement in Science will be evident in a strong number of students entered for GCSE or Entry level awards as relevant. Displays identify further opportunities that subject qualifications could lead to. The diverse and knowledge rich curriculum at Kickstart is designed to develop knowledge, skills, confidence and give the opportunity for students to develop in to articulate scientists who want to learn more about the world around them.

Analysis of assessment and mock data will help teachers decide which topics require intervention or extra focus in in revisitation activities; the curriculum is a two year rolling programme that covers the curriculum necessary for a double GCSE award as well as allow for sequential learning with a deepening focus building from foundation skills to emerging/mastery within each topic area

Measuring the impact of our curriculum is important to the department and we strive to get more students be successful in Science and achieve a qualification suitable to their individual progress. Each year we monitor the number of students that are enrolled within Science at entry level and GCSE level as well as the progress made by each pupil within our cohorts to identify areas of departmental focus.

Wider Curriculum offer

The following sections clarify how areas such as Personal development, Careers and Cultural Capital are woven into the intention, implementation and impact of the subject curriculum

	Personal Development within our curriculum
Personal Development	Science at Kickstart Academy contributes to the school curriculum by developing pupils abilities and skills within a range of areas including problem solving, observations, investigating hypothesis and drawing relevant conclusions. We aim to support our students to develop in many diverse aspects of life and to grow as both individuals as well as part of a larger team.
	Responsible, respectful and active citizens : Through our delivery of Science, including specific aspects on environmental science, students are encouraged to develop their opinions and attitudes to topics as wide ranging as global climate change, artificial selection, carbon footprints and more. This leads in to a deeper understanding of what is needed to be a responsible, respectful and active citizen.
	Fundamental British Values:

	Spiritual : Both the natural and technological world and everything within it is at the natural heart of Science. Our studies on the world around us and how continues to develop and change shows the wonders around us as well as helps to develop our sense of spiritual
SMSC	Cultural:
	Careers and Readiness For Next Phase Of Education: Science is an important aspect for understanding the world around us; it has a multitude of cross-curricular links in both knowledge and skill in areas such as Mathematic, Humanities and Technology and many more. It is also important aspect in everyday life, in many forms of employment, and in public decision-making. Many scientists utilise the skills they have developed within Science in many aspects of their life both at home and within further education/careers.
	Confidence, Resilience and Mental Health: As a subject, Science presents numerous opportunities for developing knowledge and creativity in the use of observational descriptive language, practical activities and diagrams as well as the independent approaches to investigations. Being able to complete new and interesting activities and experiments can stimulate a sense of achievement and wonder when a Scientific theory is understood and observed. Students are encouraged to build their self confidence and give activities a go, through staff and peer support we aim to build confidence and resilience within the young scientists around us.
	Character: Within the Science curriculum students are given the opportunity to make their own observations, develop their own views and explore attitudes. We help practise extended answers to questions that fully explore our understanding and own view points. Within science there are many opportunities to work independently or as part of a team helping develop independent thought as well as ensuring that they can cooperate consistently well with others. This is a fundamental aspect of teaching and learning to prepare them for life.
	Inclusive Environment: Science at Kickstart ensures inclusivity. Through our theoretical and practical activities, we ensure that all students have full access to a range of activities and cater for a range of learning styles. Science enables pupils to build a fuller understanding of the world in which they inhabit and the complex interactions that occur within an environment.
	Students in Science learn about the development of medicines and the need of vaccinations and how this can be used to protect themselves and others within the world around them. British Values; Individual liberty of own views, tolerance and mutual respect of others views is taught through the topics where different views / ethics are involved. This includes the topics of genetic modification, selective breeding, stem cell research and maintaining biodiversity.

	and moral responsibility. Making new discoveries increases our sense of awe and wonder at the complexities and elegance of the natural world. For scientists, this is a spiritual experience and drives us onwards in our search for understanding.
	Moral: Science naturally has many moral areas that are considered specifically within areas of the curriculum. From indepth discussions and debates on natural/artificial selection, vaccine dispersal, renewable energy sources, global warning and more. Scientists are encouraged to learn about these areas and develop their own opinions and attitudes related to them.
	Social : Students are strongly encouraged to debate and discuss their opinions with others as well as to develop their interaction and social skills. We work both independently and within teams and through indepth looks in to topics related to the world around us encourage students to become aware of their sense of identity, community and place in the world.
	Cultural : Through our studies of scientific developments, global/historical scientists of import and more we support students to gain a better understanding of their own sense of place and space. We foster knowledge, tolerance and understanding and help to encourage social cohesion locally and globally.
Extra-Curricular & Enrichment	We enjoy a limited range of enrichment opportunities in Science and we are always looking for new ways to enhance our classroom learning.
	Current enrichment opportunities:
	 Home cooking qualification – cooking encompasses a wide range of science related learning.
	 Previous utilisation of microscopes at Telford college
	 Occasional STEM activity days – E.g. looking at where does maths apply in the real world
	Future enrichment opportunities we plan to develop:
	Science specific Enrichment trip
	Further development of fieldwork opportunities
	 further development of links with industry
	Careers/Work Experience
Careers	
Work Experience	Students:
Offer	Within Kickstart students are encouraged to take part in vocational and work experience opportunities. We work alongside other
&	providers to encourage development of relevant skills and knowledge that can support our students in their future careers.

Staff Work Experience	Staff: Staff have the opportunities to attend CPD and work collaboratively with other schools to develop their own knowledge and understanding both within their specific subject are and within wider health, school and community related areas.
	Cultural Capital
Ofsted Definition	It is the essential knowledge that pupils need to be educated citizens, introducing them to the best that has been thought and said and helping to engender an appreciation of human creativity and achievement. Cultural Capital is encouraged in science through regular reference to scientific achievements and scientists of the past, referring to new and modern discoveries and showing relevant news reports linking to scientific improvements in modern life and technology.